3 research outputs found

    Privacy Preserving Attribute-Focused Anonymization Scheme for Healthcare Data Publishing

    Get PDF
    Advancements in Industry 4.0 brought tremendous improvements in the healthcare sector, such as better quality of treatment, enhanced communication, remote monitoring, and reduced cost. Sharing healthcare data with healthcare providers is crucial for harnessing the benefits of such improvements. In general, healthcare data holds sensitive information about individuals. Hence, sharing such data is challenging because of various security and privacy issues. According to privacy regulations and ethical requirements, it is essential to preserve the privacy of patients before sharing data for medical research. State-of-the-art literature on privacy preserving studies either uses cryptographic approaches to protect the privacy or uses anonymizing techniques regardless of the type of attributes, this results in poor protection and data utility. In this paper, we propose an attribute-focused privacy preserving data publishing scheme. The proposed scheme is two-fold, comprising a fixed-interval approach to protect numerical attributes and an improved l -diverse slicing approach to protect the categorical and sensitive attributes. In the fixed-interval approach, the original values of the healthcare data are replaced with an equivalent computed value. The improved l -diverse slicing approach partitions the data both horizontally and vertically to avoid privacy leaks. Extensive experiments with real-world datasets are conducted to evaluate the performance of the proposed scheme. The classification models built on anonymized dataset yields approximately 13% better accuracy than benchmarked algorithms. Experimental analyses show that the average information loss which is measured by normalized certainty penalty (NCP) is reduced by 12% compared to similar approaches. The attribute focused scheme not only provides data utility but also prevents the data from membership disclosures, attribute disclosures, and identity disclosures

    Artificial Intelligence in dentistry: Concepts, Applications and Research Challenges

    No full text
    Artificial Intelligence (AI) has the ability to process huge datasets, disclose human essence computationally, and perform like humans as technology advances. Because of the necessity for precise diagnosis and improved patient care, AI technology has greatly influenced the healthcare industry. In the domains of dentistry and medicine, artificial intelligence has yet to come a long way. As a result, dentists must be aware of the potential implications for a profitable clinical practise in the future. In this paper, we present the current applications of AI in dentistry. The different types of AI techniques are introduced and summarized. The state-of-the-art literature is studied analysed. A comparative analysis on the different AI techniques in dentistry is presented. Further, the research challenges in the field of dentistry and future directions are also provided

    Resource Provisioning Techniques in Multi-Access Edge Computing Environments: Outlook, Expression, and Beyond

    No full text
    Mobile cloud computing promises a research foundation in information and communication technology (ICT). Multi-access edge computing is an intermediate solution that reduces latency by delivering cloud computing services close to IoT and mobile clients (MCs), hence addressing the performance issues of mobile cloud computing. However, the provisioning of resources is a significant and challenging process in mobile cloud-based environments as it organizes the heterogeneous sensing and processing capacities to provide the customers with an elastic pool of resources. Resource provisioning techniques must meet quality of service (QoS) considerations such as availability, responsiveness, and reliability to avoid service-level agreement (SLA) breaches. This investigation is essential because of the unpredictable change in service demands from diverse regions and the limits of MEC’s available computing resources. In this study, resource provisioning approaches for mobile cloud computing are thoroughly and comparatively studied and classified as taxonomies of previous research. The paper concludes with an insightful summary that gives recommendations for future enhancements
    corecore